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Motivation

Large Government-Initiated Brain
Research Projects
Connectionism Implemented in Silicon
New Imaging Technologies
New Neurobiological Discoveries
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Large-Scale
Brain Projects
BRAIN Initiative - USA, April 2013  
~ Brain Research Through Advancing Innovative Neurotechnologies

on a par with the Apollo Program to land humans on the moon
http://www.whitehouse.gov/infographics/brain-initiative

Goal: understand the human mind and uncover new ways to treat,
prevent, and cure brain disorders like Alzheimer’s,
schizophrenia, autism, epilepsy, and traumatic brain injury

Expected costs: > 4 billion USD / 10 years
Participants: DARPA ~ Defense Advanced Research Projects Agency

IARPA ~ Intelligence Advanced Research Projects Activity
NIH ~ National Institutes of Health
NSF ~ National Science Foudation
FDA ~ Food and Drug Administration
private sector

4
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Large-Scale Brain Projects

HBP ~ Human Brain Project – EU, January 2013
https://www.humanbrainproject.eu/

Goal: understand what makes us human (through brain–wide 
analyses of neural network activity at the level of single 
neurons), develop new treatments for brain disorders and
build revolutionary new computing technologies. 

13 Subprojects: Strategic Mouse Brain Data 
Strategic Human Brain Data 
The Brain Simulation Platform, 
The High Performance Computing Platform, etc. 

Expected costs: 1.3 billion USD /10 year
Participants: 112 partners from 24 countries
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Large-Scale Brain Projects

Brain/MINDS Project - Japan, 2014 
~  Brain Mapping by Integrated Neurotechnologies for Disease Studies

http://brainminds.jp/en/

Goal: study the neural networks controlling higher brain
functions in the marmoset, to get new insights into
information processing and diseases of the human
brain such as dementia and depression

Expected costs: 300 million USD / 10 years
Participants: RIKEN Brain Science Institute – Core Institute 

Keio University – Partner Institute 
Kyoto University – Partner Institute 
… and several other institutions (mainly academic)

6
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Large-Scale
Brain Projects
Government-Initiated:

China Brain Science Project, 2015
~ is focused on developmental, psychiatric and neurodegene-

rative disorders and should promote breakthroughs in AI 
research to reshape country´s industry, military, and service
structure for the new industrial revolution

huge projects launched also by Israel and Canada

Other brain research projects include:
Allen Brain Atlas - Allen Institute for Brain Science, USA, 2003

BigBrain - Montreal Neurological Institute and German Forschungs-
zentrum Jülich, June 2013
https://bigbrain.loris.ca/main.php
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Connectionism Implemented
in Silicon: Early Attempts

8The Daily Telegraph, 31 January 1950



Connectionism Implemented
in Silicon: The Mark I Perceptron
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A visual pattern classifier:
20x20 photosensitive input
units modeling a small retina 
512 hidden units (stepping 
motors) each of which could 
take several excitatory and 
inhibitory inputs
8 output (response) units
connections from the input to 
the hidden layer could be altered 
through plug-board wiring, 
but once wired they remained
fixed for the experiment 
connections from the hidden to 
the output layer were adjusted 
through perceptron training 

The Mark I Perceptron, Cornell Aeronautical Laboratory, 1957-1959 
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Connectionism Implemented
in Silicon – the project SyNAPSE

~ Systems of Neuromorphic
Adaptive Plastic Scalable 
Electronics

A DARPA program undertaken by 
HRL, HP and IBM (Dr. D. Modha)

Goal: develop a novel cognitive 
computing architecture inspired 
by the function, low power, and 
compact volume of the brain

non von Neumann architecture
(neuromorphic computing)
applications, e.g., in image and
video processing, NLP, composer
recognition, collision avoidance
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Connectionism Implemented
in Silicon – Neurosynaptic Chips
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neurosynaptic TrueNorth Chip (with 4096 neurosynaptic cores)
1 million programmable neurons (cca 86 bn in human brains)
256 million configurable synapses (cca 1014–1015 for humans)
efficient, scalable, flexible

a circuit board with a 4×4 array 
of SyNAPSE-developed chips

a neurosynaptic core
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Connectionism Implemented
in Silicon – Data Storage
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A new hand-sized tape cartridge can store 220 TB of data:
big data
cloud
computing
cheap

IBM, Sony, …
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New Imaging Technologies:
Lightsheet Microscopy

ZEISS Lightsheet Z.1:
32 TB Storage and Data Analysis Module
weights cca 500 lbs
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Z1 was world´s first program-controlled computer

http://www.nature.com/nmeth/journal/v10/n5/fig_tab/nmeth.2434_SV4.html


New Imaging Technologies:
Lightsheet Microscopy

based on the principles of ultramicroscope developed by 
Richard Adolf Zsigmondy in 1902 (Nobel Prize in 1925)

http://www.nature.com/nmeth/journal/v10/n5/fig_tab/nmeth.2434_SV4.html 14



CAS 2015, San José

New Imaging Technologies:
Lightsheet Microscopy – System Requirements

adapted from E. G. Reynaud et al.: Guide to Lightsheet Microscopy for
Adventurous Biologists, Nature Methods, Vol. 12, pp. 30-34, 2015.
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New Imaging Technologies:
Lightsheet Microscopy

16

OpenSPIM (~ Open Source Selective Plane Illumination Microscopy)

portable
cheap

~ 7000 EUR

easy to assemble
http://openspim.org

off-the-shelf components and 3D-printed parts



Neurobiological Breakthroughs:
Understanding of the visual system

based on the research of David H. Hubel and Torsten N. Wiesel
on functional architecture in the cat's visual cortex in 1959 and
1962 (Nobel Prize in 1981)
architecture of the visual system ~ individual cortical cells respond 
not to the presence of light, but rather to contours of specific
orientation; feature-detecting cells form a hierarchy of multiple stages
ocular dominance ~ the preference of cells that process visual stimuli 
to respond to input from one or the other eye. 
=> therapy for children born with cataracts or strabismus

17http://cns-alumni.bu.edu/~slehar/webstuff/pcave/hubel.html
https://youtu.be/IOHayh06LJ4

Hubel & Wiesel´s hierarchy of features

https://youtu.be/IOHayh06LJ4
https://youtu.be/IOHayh06LJ4


CAS 2015, San José

Macaque brain long
distance network

Neurobiological Breakthroughs:
Brain Connections

https://youtu.be/YZTRxKyx410

Connectograms:
2D-graphs of long-distance  
connections in the brain 
based on in vivo and non-
invasively obtained diffusion
magnetic resonance imaging
data (MRI)
insight into pathologies
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Dharmendra S. Modha, Raghavendra Singh: Network architecture of the long-dist-
ance pathways in the macaque brain, PNAS 2010;107:13485-13490.

©2010 by National Academy of Sciences

https://youtu.be/YZTRxKyx410


Neurobiological Breakthroughs:
Brain Connections in Autism

46 healthy neurotypical children, 
16 children with classic autism, 
14 children whose autism is part of a 
genetic syndrome called TSC
29 children with TSC but not autism

Both groups of children with TSC 
show fewer connections overall
Both groups with autism have 
more connections between adja-
cent areas of the brain and fewer 
connections across distant areas. 

JM Peters et al.:“Brain functional networks in
syndromic and non-syndromic autism: a 
graph theoretical study of EEG connectivity,”
BMC Medicine. Published online Feb. 27 2013

19

Connectivity between 19 different brain regions, based on EEG data:
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Van Horn JD, Irimia A, Torgerson
CM, Chambers MC, Kikinis R, et al. 
(2012) Mapping Connectivity 
Damage in the Case of Phineas
Gage. PLoS ONE 7(5): e37454. 
doi:10.1371/journal.pone.0037454

20

Neurobiological Breakthroughs:
Connections and cortical measures of 110 normal, 
right-handed males, aged 25-36 
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Neurobiological
Breakthroughs

Connectogram with cortical measures:
110 normal, right-handed males, aged 25-36
the left hemisphere is depicted on the left, the right hemisphere
on the right
each cortical area is labeled with an abbreviation and assigned
its own color 
the concentric circles represent additional attributes of the 
corresponding cortical region (grey matter volume, surface area,
degree of connectivity, etc.)
inside the circles, lines connect regions that are structurally 
connected
the density (number of fibers) of the connections is reflected in
the opacity of the lines

21



Neurobiological Breakthroughs:
Neuron-Specific Optogenetic Control

Optogenetics ~ brain control with light
allows for fine manipulation of neuronal activity to control the
function of neuronal microcircuits in vitro and in vivo
only the genetically targeted cells will be under the control of 
the light while leaving other cells to function normally 
optical stimulation (light in the UV to the IR wavelengths) can
control (either excite or inhibit) genetically targeted neurons in 
the brain with a high spacial and temporal resolution

Control of social / asocial behavior in mice amygdala
ChR2 Stimulation of MeApd Neurons Triggers Aggression toward a Female Intruder
ChR2 Stimulation of vGLUT2+ Neurons Promotes Repetitive Self-Grooming Behavior
ChR2 Stimulation of vGAT+ Neurons Suppresses Repetitive Self-Grooming Behavior
http://www.sciencedirect.com/science/article/pii/S0092867414010393

22W Hong, D-W Kim, DJ Anderson: Antagonistic Control of Social versus Repetitive Self-Grooming
Behaviors by Separable Amygdala Neuronal Subsets, Cell 158 (6), 2014, 1348–1361.

http://www.sciencedirect.com/science/article/pii/S0092867414010393
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Deep Neural Architectures

Motivated by biological neural networks

Some functions compactly represented with k 
(k>2) layers may require exponential size with
2 layers

Hierarchy, structure, sparse coding and shared
representations

Various approaches include:
Neocognitron
Multilayer Perceptrons and Error Back Propagation
Convolutional Neural Networks
Deep Belief Networks

23
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Neocognitron
Proposed by Kunihiko Fukushima in 1980
Kunihiko Fukushima: Neocognitron: A Hierarchical Neural
Network Capable of Visual Pattern Recognition, Neural
Networks, Vol. 1, pp. 119-130, 1988.

Sparse hierarchical network structure
1D-view of interconnections between
the neurons from different layers

24



Neocognitron: 
two types of neurons

C-cells:
support shift invariance in the input
fixed incoming weights
receive signals from several S-cells
extracting the same feature, but at
different positions
activated if at least some of these                                            
S-cell groups is active

25

S-cells: 
extract features at certain
positions
variable incoming weights
reinforced during training

K. Fukushima: Neocognitron: A Hierarchical Neural Network Capable of
Visual Pattern Recognition, Neural Networks, Vol. 1, pp. 119-130, 1988.



Neocognitron:
the recall process

the cells are arranged into 2D-arrays
(~ cell-planes)

alternating layers of S- and C-cells

simple features extracted in lower
layers are combined into more                                    more
complex features at higher layers

the cells at higher layers process larger areas of the input

neighbouring cells receive similar signals

at the top layer, there is only 1 C-cell in each cell-plane 
each of these C-cells is activated only by input patterns from the
corresponding category

26K. Fukushima: Neocognitron: A Hierarchical Neural Network Capable of
Visual Pattern Recognition, Neural Networks, Vol. 1, pp. 119-130, 1988.
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Two main principles:

Neocognitron: 
the training process

1. Reinforcement of maximum output cells
Only the cell best responding to the training stimulus will
be selected to have its weights reinforced

Once a cell is selected and its weights reinforced, it usually
loses its responsivness to other features

2. Development of iterative connections
All the S-cells in the cell-plane respond to the same
feature, and the differences between them arise only from
the difference in position of the feature to be extracted

27
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Neocognitron - training

1. Initialize the weights with small positive values. 

2. Repeat until convergence 
present an input pattern to the network; 

in each cell-plane, choose the S-cell with the strongest 
response (~ the seed cell); 

reinforce the weights of the input connections for the 
selected “winning” S-cell to strengthen its response to the 
detected feature; 

reinforce also the weights of the input connections for all 
other S-cells from the same cell-plane using the “winning”
cell as a template. 

28



Neocognitron:
characteristic properties

29

A pioneering neural network model capable
of learning to recognize 2D-visual patterns
Robust to errors in position, scale and distortion
Higher layers can be trained only after the training of
preceding stages has been completely finished
Labeled seed cells are required for supervised
training
During selforganization, maxi-
mum output cells are selected
automatically as seed cells

???

Image courtesy
of A. J. Frazer

K. Fukushima: Neocognitron: A Hierarchical Neural Network Capable of
Visual Pattern Recognition, Neural Networks, Vol. 1, pp. 119-130, 1988.
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Multilayer Perceptrons
and the Error Back Propagation

31

compute the actual response 
of the network and compare it
with its desired response

Goal: minimize the error
adjust the weights and thresholds
from the output to the input

O  U  T  P  U  T

I  N  P  U  T

( )2
,,2

1∑∑ −=
p j

pjpj dyE
actual
output

desired output

patterns
output neurons



Multilayer Perceptrons
and Error Back Propagation

First used for gradient evaluation by Paul J. Werbos in 1974

1:   Initialize the weights to small random values
2: Present a new training pattern in the form of: [input x, desired output y]
3:   Calculate actual output:  in each layer, the activity of neurons is given by:

4:  Weight adjustment: start at the output layer and proceed back towards the
input layer according to:

for the weight wij (t) from neuron i to neuron j in time t; learning/momentum rates α / αm ; 
potential / local error on neuron j denoted as ξj / δj ; the index k for the neurons from the layer
above the neuron j and the slope of the transfer function λ

5:   Repeat by going to step 2

32
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George´s Girls
Task: guess if George will like that girl

hair intelligence sense of blue 1.hidden 2. hidden attractivity
length humor      eyes neuron    neuron

1. 0.84       0.39         0.78       0.79        0.64       1.00             0.42
2. 0.91       0.19         0.33       0.77  0.00       1.00 0.20
3. 0.27       0.55         0.47       0.69        0.98       1.00             0.50
4. 0.36       0.51         0.95       0.91        0.86       1.00             0.60
5. 0.63       0.71         0.14       0.61        0.85       1.00             0.62
6. 0.02       0.24         0.13       0.80        0.02       1.00             0.05
7. 0.61       0.69         0.63       0.52 1.00       1.00 0.80
8. 0.49       0.97         0.29       0.77   0.59       1.00             0.40
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activity interpretation
for hidden neurons:

1 active YES

0 passive NO

0.5 silent DON´T 
KNOW

transparent structure
detection and pruning of
redundant neurons
improved generalizationI  N  P  U  T

O  U  T  P  U  T

Multilayer Perceptrons: 
what are the neurons really doing?

34
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George´s girls revisited
How many neurons will George need to solve his problem?

hair intelligence sense of blue 1.hidden 2. hidden attractivity
length humor      eyes neuron    neuron

1. 0.84       0.39         0.78       0.79        0.64       1.00             0.42
2. 0.91       0.19         0.33       0.77  0.00       1.00 0.20
3. 0.27       0.55         0.47       0.69        0.98       1.00             0.50
4. 0.36       0.51         0.95       0.91        0.86       1.00             0.60
5. 0.63       0.71         0.14       0.61        0.85       1.00             0.62
6. 0.02       0.24         0.13       0.80        0.02       1.00             0.05
7. 0.61       0.69         0.63       0.52 1.00       1.00 0.80
8. 0.49       0.97         0.29       0.77   0.59       1.00             0.40
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The German Traffic Sign 
Competition (IJCNN 2011)

Convolutional Neural Networks performed best!
No need for custom-made image pre-processing 
98.98 % (Schmidhuber et al), 98.97 % (LeCun et al), 98.81 % 
(human performance) 
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CNN-networks
(Convolutional neural networks)

The LeNet-5 model (Yan LeCun et al. 1998)

Trained by back-propagation (sparse connectivity)
Local receptive fields, weight sharing and spatial sub-sampling
(alternating convolutional and subsampling layers)
Invariant object recognition (up to a certain degree)

X Fixed number of feature maps in each layer!
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner: Gradient-Based Learning Applied
to Document Recognition, Proc. of the IEEE, Vol. 86, pp. 2278–2399, 1998. 
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receptive fields of the same size overlapping in            
rows/columns

neuron (i,j,f,l) at the position (i,j) in the feature map f of the layer l is
thus connected to neurons (i+Δi, j+Δj, f´, l-1)  from the layer l-1 by the
weight for ; the neurons from
the feature map f take their input from a set of feature maps

The weights are shared for all the neurons from the same feature map

The potential and output of the neuron (i,j,f,l):

The size ml x nl of all feature maps from l is imposed by the size of the
feature maps in layer l-1 and by the size of the receptive field
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non-overlapping subsampling areas of the size (usually 2x2)

multiplicative trainable coefficients af,l and additive trainable biases bf,l

The potential and output of the neuron (i,j,f,l):

a) averaging:

b) maximizing:

The size ml x nl of the feature maps from l : 

lf
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,

,ξ lf
jiy ,

,

CNN-networks:
the subsampling layer l
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DBN-networks
(Deep Belief Networks) G.E. Hinton et al. 2006

Stacked Restricted Boltzmann Machines with a classifier
Unsupervised pre-training (layer-wise)
Short supervised fine-tuning

G. E. Hinton, S. Osindero, Y.-W. Teh: A Fast Learning Algorithm for Deep
Belief Nets, Neural Computation, Vol. 18, pp. 1527–1554, 2006.
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RBM-networks
(Restricted Boltzmann Machines)

A popular building block for deep architectures
A bipartite undirected graphical model
RBMs are universal approximators (with enough hidden units, they can
perfectly model any discrete distribution)
Adding one hidden unit (with a proper choice of parameters) guarantees
increasing likelihood

hidden layer:  h=(h1, h2, …, hM)

visible layer:   x=(x1, x2, …, xN)
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N. Le Roux, Y. Bengio: Representational power of restricted Boltzmann machines
and deep belief networks, Neural Computation, Vol. 20(6) pp. 1631–1649, 2008. 
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RBM-networks
Energy function: E(x,h) = - ( xTWh + bTh + cTx )

Probability of configuration (x,h):

Our goal:  p(x) = ptrain(x)
==>  maximize the likelihood of the training data

As 

adjust the weights by:
(and similarly for the biases)
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Applications

Image Classification / Processing
Signal and Multimedia Data 
Processing
Knowledge Extraction and
Interpretation

43
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Recognition of handwritten digits
accuracy of CNN-networks around 93 % (with M. Kukacka)

44

Simple local primitives: e.g., background, background
followed by an object from the right, diagonal line
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Recognition of human faces
accuracy of CNN-networks almost 93 % (with M. Kukacka)

45

Features:
light surfaces
dark surfaces
light-coloured
noses
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Objective:

Detection of Hockey Players
accuracy of CNN-networks over 98.5 % (with M. Hrincar)

Reliable online video processing for augmented reality
Data:

Records of broadcasted hockey matches (publicly available during
the World Championships 2011 and 2012)

Results:
http:tinyurl.com/hokejdetect

light surfaces
dark surfaces
light-coloured

noses
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Detection of Hockey Players
accuracy of CNN-networks over 98.5 % (with M. Hrincar)

47

accuracy of a CNN-network trained on original data to 
Gaussian noise (with zero mean and growing variance)
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Detection of Hockey Players
accuracy of CNN-networks over 98.5 % (with M. Hrincar)

48

internal representations in the feature maps filter out the noise
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Deep Neural Networks for
3D-data Processing (with J. Pihera and J. Veleminska)

49

Detection of characteristic face features

Classification of 3D-face models according
to the person´s gender
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Difficult to determine gender based on the face

George´s Girls – Are That Girls?

Model - Andrej Pejic
(source: idnes.cz)

Transsexual participant of
Miss Universe Canada
(source: idnes.cz)

Miss Tiffany’s Universe
trans-genders
(source: super.cz)

Human performance 
(accuracy) on 3D-face 
scan classification:
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Data and models
3D data – face models
(courtesy of the Department of Anthropology and Human Genetics, 
Faculty of Natural Sciences of the Charles University in Prague)

Theoretical model
Kohonen´s SOM
GNG (Growing Neural Gas)
Convolutional Neural Networks ~ an advanced model for shape
recognition in 2D-images
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Detection of characteristic
face features (with J. Pihera and J. Veleminska)

52

SOM, 20x20 neurons, 34 clusters GNG, 400 neurons, 40 clusters

– self-organizing neural network models trained on the face data
– clustering of the neurons and labeling of the clusters
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Sexual Dimorphism – classification
according to person´s gender
(with J. Pihera and J. Veleminska)

a 2D-transform:
a drawn 3D model (raw)
pre-processing by means
of a SOM
images

a 3D transform:
direct / clustered
pre-processing by means
of a SOM
3D tensors (223 voxels)

53

Examples of rotated and scaled patterns added to the training set.
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Classification according
to person´s gender – 2D
(with J. Pihera and J. Veleminska)

Raw: Pre-processed by a SOM:

54

Input and output of the first detection layer
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Convolutional neural
networks were designed
to process 2D-information

3D tensors at the input

New model of ND-CNNs:
Extend the feature maps to 
process N-dimensional object
information

Feature maps shrink very
fast x combine the input
from a large region

Complexity similar to CNNs

Classification according
to person´s gender – 3D
(with J. Pihera and J. Veleminska)

55

3D-convolution of a 4x4x4 
feature map (right) with a 
3x3x3 receptive field. 
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Classification according
to the person´s gender – results
(with J. Pihera and J. Veleminska)
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Transformation Error Standard 
deviation

2D Raw 0.85% 0.48

2D SOM 14.15% 1.43

3D Direct 8.15% 1.63

3D Direct, clustered 5.37% 1.52

3D SOM 1.28% 0.47

Classification according to person´s gender is
relatively precise
Raw transformation yields better results for 2D
Pre-processing by a SOM is better for 3D
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Classification of 3D-face models:
accuracy of CNNs around 98% against 64% in humans
(with J. Pihera and J. Veleminska)

stronger
jaws

sharper
nose

gentler
features

smaller
nose
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Conclusions
Understand the function of the brain
Stimuli for science and industry
Improved machine performance for at
least some tasks should be very welcome

… but shall we really let the machines
copy everything from us - even
courage, joy, curiosity, …?
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Thank you for your attention!
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