

When is complex too complex?

Graph energy and its role in proactive complexity management of cyber-physical systems

Prof. Olivier de Weck Massachusetts Institute of Technology <u>deweck@mit.edu</u>

Joint work with Dr. Kaushik Sinha and Narek Shougarian

Why should we care about complexity?

How do we quantify complexity?

How to better manage complexity?

What have you been reading lately?

The Wright Flyer

Norm Augustine, Augustine's Laws, 6th Edition, AIAA Press, 1997.

What is driving this escalation of cost?

Contributors to Price Escalation from the F-15A (1975) to the F-22A (2005)

Source: DARPA TTO (2008)

Functional Requirements Explosion

Image by MIT OpenCourseWare.

Structural DSM of Wright Flyer

Legend
Physical connection
Mass flow
Energy flow
Information flow

DSM 18x18

Connections 62 Physical 4 Mass Flow 11 Energy Flow 9 Info Flow Total: 86

NZF = 86/1,224 = **7% density**

<k>=~5

Design Structure Matrix (DSM) – captures structure of elements of form

Form of a Simple System

- Generally 5-9 parts (7+/- 2)
- At level -1 we encounter real or <u>atomic</u> parts
 A part cannot be taken a-part without loosing its functionality or integrity
 Definition of what is a part is not always unambiguous
- Tree structure is symbolic

Form of a 'Medium' System

Medium systems typically need 2-3 layers of decomposition

Why do we need system decomposition?

Here is a question for you ...

- How many levels of decomposition (depth of drawing tree) do we need to describe the car shown in the previous picture?
 - 1
 - 2
 - 3
 - 4

- 6
- >6
- Question is unclear to me

Magic Number 7+/-2

- Human Cognitive Limits for Processing Information
- George Miller (1956)
- http://www.musanim.com/miller1956/

complex

How many levels of decomposition?

How many levels in drawing tree?

 \sim #parts #levels simple Screwdriver (B&D) 3 1 Roller Blades (Bauer) 2 30 Inkjet Printer (HP) 300 3 Copy Machine (Xerox) 2,000 4 Automobile (GM, VW ...) 10,000 5 100,000 Airliner (Boeing) 6 •

Source: Ulrich, K.T., Eppinger S.D., Product Design and Development Second Edition, McGraw Hill, 2nd edition, 2000, Exhibit 1-3 Assume 7-tree

 $#levels = \left| \frac{\log(\# parts)}{\log(7)} \right|$

Why should we care about complexity?

How do we quantify complexity?

How to better manage complexity?

Elaine Weyuker's (1998) criteria

Any valid metric for complexity should demonstrate the following broad characteristics (i.e., they act as *necessary conditions* or as *axioms*):

- 1) Invariant to relabeling (i.e., isomorphism).
- 2) Possible to have different system architectures have the same complexity level.
- 3) Differentiate between system architectures.
- 4) System structure at least partially determines complexity of functionally equivalent systems.
- 5) Changes in internal architectural patterns, without changes in system size, impact the level of structural complexity.
- 6) Changing subsystem interfacing patterns impact structural complexity.
- 7) A system is structurally more complex than the sum of complexities of its constituent subsystems. [whole is larger than the sum of parts]

The Structural Complexity Metric

Structural Complexity, $C = C_1 + C_2 \cdot C_3$

Complexity due to components alone (number and heterogeneity of components)

Complexity due to topological formation (a scaling factor) – due to dependency structure

Complexity due to pair-wise component interactions (number and heterogeneity of interactions)

System Hamiltonian and Complexity

$$\varepsilon_{\pi} = n\alpha + \beta \sum_{i=1}^{n} h_i \sigma_i \le n\alpha + \beta \underbrace{\left(\sum_{i=1}^{n} h_i\right)}_{n} \underbrace{\left(\sum_{i=1}^{n} \sigma_i\right)}_{E(A)}$$
$$\therefore \varepsilon_{\pi} \le n\alpha + n^2 \beta \underbrace{\left(\frac{E(A)}{n}\right)}_{n}$$

if there is no chemical bond between the atoms i and j.

ole, # Cil, # Side or t

 $H\psi = \varepsilon\psi$

Introduce a notion of of *configuration energy*:

$$\Xi := \underbrace{n\hat{\alpha}}_{C_1} + \underbrace{m\hat{\beta}}_{C_2} \underbrace{\left(\frac{E(A)}{n}\right)}_{C_3} = C_1 + C_2 C_3$$

Use the above functional form to measure the complexity associated to the system structure - Structural Complexity of the system where α 's stand for component complexity while β's stand for interface complexity:

$$H\psi = \varepsilon\psi \qquad C = C_1 + C_2 C_3$$
$$\left|\varepsilon_i\right| = \alpha + \beta\sigma_i; \ \varepsilon_{\pi} = \sum_{i=1}^n h_i \left|\varepsilon_i\right| \qquad = \sum_{i=1}^n \alpha_i + \left(\sum_{i=1}^n \sum_{j=1}^n \beta_{ij}\right) \left(\frac{E(A)}{n}\right) = \sum_{i=1}^n \alpha_i + \left(\sum_{i=1}^n \sum_{j=1}^n \beta_{ij}\right) \gamma E(A)$$

Simple Molecule

Complex Molecule

https://en.wikipedia.org/wiki/Erythropoietin

Validation using Human Experiments

- Empirical validation of the structural complexity metric
 - Recruited volunteer test subjects.
 - Provided: (a) ball and stick chemistry toolkit;
 - (b) a set of pictures of molecules to be built.
 - Task: Assemble the depicted architecture.
- Record for each model (for each individual)
 - **C** = computed structural complexity
 - T = [time to build, including rework if any]

Molecule No.	n	m	C1	C2	C3= E(A)/n	C2*C3	SC = C1 + C2 C3
1	3	4	0.3	0.4	0.94	0.38	0.68
2	7	12	0.7	1.2	1.13	1.35	2.05
3	12	22	1.2	2.2	1.13	2.48	3.68
4	12	22	1.2	2.2	1.00	2.20	3.40
5	12	22	1.2	2.2	1.27	2.80	4.00
6	14	26	1.4	2.6	0.96	2.50	3.90
7	15	28	1.5	2.8	0.97	2.70	4.20
8	16	30	1.6	3	1.40	4.21	5.81
9	19	38	1.9	3.8	1.58	6.00	7.90
10	27	56	2.7	5.6	1.08	6.05	8.75
11	39	80	3.9	8	1.12	8.96	12.86
12	46	100	4.6	10	1.19	11.92	16.52

Experimental Results are super-linear

Empirical Observation about Modularity

Structural Complexity

Example: Cyber-Physical System

Construct Validity: Weyuker's Criteria

• Graph Energy stands out as both computable and satisfies <u>Weyuker's criteria</u> and establishes itself as a theoretically valid measure (i.e., construct validity) of complexity.

Complexity Measure	Computability	Aspect emphasized	Weyuker's Criteria		
Number of components [Bralla, 1986]	~	Component development (count-based measure)	×		
Number of interactions [Pahl and Beitz, 1996]	~	Interface development (count-based measure)	×		
Whitney Index [Whitney <i>et al.</i> , 1999]	~	Components and interface developments	×		
Number of loops, and their distribution []	×	Feedback effects	×		
Nesting depth [Kerimeyer and Lindemann, 2011]	×	Extent of hierarchy	×		
Graph Planarity [Kortler <i>et al.</i> , 2009]	~	Information transfer efficiency	×		
CoBRA Complexity Index [Bearden, 2000]	~	Empirical correlation in similar systems	×		
Automorphism-based Entropic Measures [Dehmer <i>et al</i> ., 2009]	×	Heterogeneity of network structure, graph reconfigurability	~		
Matrix Energy / Graph Energy	~	Graph Reconstructabality	~		

Complexity should be abstraction-Invariant

Size: 50x50

Digital Printing Press (Xerox) Example

Size: 91×91

DSM attribute	Coarse Representation	Finer representation				
System size, N	50	91				
C ₃	1.3534	1.3597				

Functional Area	Coarse DSM (50x50)	Fine DSM (91x91)
ROS Assembly	4	10
Marking elements	16	38
Paper Path	7	12

Why should we care about complexity?

How do we quantify complexity?

How to better manage complexity?

Hierarchical / layered Architecture \rightarrow *transitional,* $1 \le C_3 < 2$

Distributed Architecture \rightarrow hyperenergetic, $C_3 \ge 2$

 Trend towards more distributed architecture with higher structural complexity and significantly higher development cost^{*}

	C ₁		C ₂		C ₃		С		C/C _{ML}		С /С н
	Old	New	Old	New	Old	New	Old	New	Old	New	Cnew / Cold
Most Likely	161	188	126	184	1.51	1.69	351	499	1	1	1.42
Mean	179	244	141	240.4	1.51	1.69	392	650.3	1.12	1.30	1.65
Median	178	242	139	238.9	1.51	1.69	388	646.8	1.10	1.29	1.66
70 percentile	181	247.9	145	246.2	1.51	1.69	399.6	663.94	1.14	1.33	1.66

 Trend towards more distributed architecture with higher structural complexity and significantly higher development cost^{*}. Similar trend was observed in <u>Printing Systems</u>.

P point – complexity phase transition

- The *P* **point** on graph energy density plot: Phase transition for complxity
- At densities higher than **P** point, structural complexity increases but that does not buy much improvement in terms of performance measures (e.g., network diameter)

- Use equivalent random networks (Erdős–Rényi) as background.
- P-point has E(A) equivalent to fully connected system, and architectures become rank-dense beyond this point (critical for design).

Real Product Design and P-Point Complexity

- Can compare systems at same level of abstraction in this space
- Use equivalent random networks (Erdős–Rényi) as background (red curve)
- P-point has E(A) equivalent to fully connected system, critical for design
- If we go beyond the P-point in System Design will have diminishing returns

[Whitney et al., 1999]

37

Complicatedness vs. Complexity

• Complicatedness, b = g(complexity, modularity, novelty, cognitive bandwidth, ...)

Implication: A 42% increase in complexity Will lead to a 69% increase in R&D cost

Ramasesh and. Browning, 2012 (preprint)

Development Cost and "Complexity"

- CoBRA (Aerospace Corp., 2008) Complexity Index based on analysis of historical data.
- Projects that were highly complex but tried to cut development cost had high failure rates

Three Dimensions of Complexity

40

NRE Cost – Non-Recurrent Engineering Cost

Complexity budget is the level of complexity that maximizes Value !

$$P = P_{\max}\left(\frac{kC^n}{1+kC^n}\right)$$

$$NRE = aC^{m}$$

$$V = \frac{P}{NRE} = P_{\max}\left(\frac{k}{a}\right) \left[\frac{C^{(n-m)}}{1+kC^{n}}\right] = S\left[\frac{C^{(n-m)}}{1+kC^{n}}\right]$$

Value function as the complexity price for performance gain – Maximize V:

$$C_*^n = \frac{\left(\frac{n}{m}\right) - 1}{k}; P_* = P_{\max}\left(1 - \frac{m}{n}\right)$$

$$NRE_* = a \left[\frac{\left(\frac{n}{m}\right) - 1}{k}\right]^{\frac{m}{n}}; V_* = S\left(\frac{m}{n}\right) \left[\frac{\left(\frac{n}{m}\right) - 1}{k}\right]^{\left(1 - \frac{m}{n}\right)}$$

Iso-Complexity \rightarrow how to allocate C?

 Once we set a complexity budget, there are different ways to distribute this total structural complexity, C into its three components {C₁, C₂, C₃} : *IsoComplexity Surface*

Iso-complexity surface: n = 20 components, assuming, c_1 in [10,60]; c_2 in [12,40] and C = 100.

- Tradeoff between (i) complex components and simple architecture, or (ii) simpler components and more complex architecture.
- Choice can be made depending on complexity handling capabilities of the development organization. E.g.
 - Excellent component designers
 - Systems integrators

Space Shuttle Lifetime Cost (1971-2011)

- Vision: partially reusable space vehicle with quick turnaround and high flight rate
- Actual: complex and fragile vehicle with average cost of about \$1.5B/flight (20,000 workforce)
- Why?
 - Congress capped RDT&E at \$B5.15 (1971)
 - Did not do complexity budgeting

What we wanted

What we got

Why should we care about complexity?

How do we quantify complexity?

How to better manage complexity?

Summary of key points

- Structural complexity of cyber-physical systems has been increasing steadily since industrial revolution
- Driven by customer needs and competition → functional complexity
 → structural complexity → organizational complexity
- Due to human cognitive bandwidth limitation (magic 7+/-2) →
 Complicatedness drives super-linear cost in effort (b ~ 1.5)
 - Abstraction layers and decomposition into modules
- A rigorous measure of complexity
 - Satisfies Weyuker's criteria (1998)
 - C = C1+ C2*C3; Graph Energy is a measure of topological complexity
- Better complexity-based management
 - P-Point is a critical transition point
 - Critical nodal degree <k>cr=6
 - Iso-complexity based budgeting with clear targets